Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Several concerns were raised in a private email by Paul Labute (CCG) about Sage 2.1:

Table of Contents

t49 vs t84

t49 "*~[#7a]:[#6a:3]~*" in Sage 2.1.- seems to be handled by later t84; should t49 be deleted?

...

We can verify this by inspecting the training dataset to see which molecules need t49 (results are shown in this notebook

View file
nameRedundant parameters.htmlpdf
). Visualizing the molecules that use t49 shows that it applies to aromatic rings with a charged N, for example:

...

Therefore, ost aromatic N atoms are treated by t84, but t49 is not redundant, as it applies to aromatic charged N.

Code Block
languagepy
from openff.toolkit import Molecule, ForceField, Topology
forcefield = ForceField("openff-2.1.0.offxml")
import tqdm
from qcportal.client import FractalClient
from openff.qcsubmit.results import TorsionDriveResultCollection

# Create a client which allows us to connect to the main QCArchive server.
qcarchive_client = FractalClient()

td_result_collection = TorsionDriveResultCollection.parse_file(
    "sage-2.1.0/inputs-and-outputs/data-sets/td-set-for-fitting-2.1.0.json"
)

records_and_molecules = td_result_collection.to_records()

use_t49 = [] # list of molecules that use t49

for _, molecule in tqdm.tqdm(records_and_molecules, desc="checking"):
    all_labels = forcefield.label_molecules(molecule.to_topology())
    for mol_idx, mol_forces in enumerate(all_labels):
        for force_tag, force_dict in mol_forces.items():
            for atom_indices, parameter in force_dict.items():
                atomstr = ""
                for idx in atom_indices:
                    atomstr += "%3s" % idx
                # for some reason this adds each molecule 4 times for each appearance of t49
                if parameter.id == 't49': 
                    use_t49.append(molecule.to_smiles())

# Create unique list of molecules that use t49
set_list = set(use_t49)
use_t49_unique = list(set_list)

# Visualize the molecules
Molecule.from_smiles(use_t49_unique[0])
Molecule.from_smiles(use_t49_unique[1])
Molecule.from_smiles(use_t49_unique[2])

...

We can verify by checking whether any molecules in the training set use this parameter (results in this notebook

View file
nameRedundant parameters.htmlpdf
):

Code Block
from openff.toolkit import Molecule, ForceField, Topology
forcefield = ForceField("openff-2.1.0.offxml")
import tqdm
from qcportal.client import FractalClient
from openff.qcsubmit.results import TorsionDriveResultCollection

# Create a client which allows us to connect to the main QCArchive server.
qcarchive_client = FractalClient()

td_result_collection = TorsionDriveResultCollection.parse_file(
    "sage-2.1.0/inputs-and-outputs/data-sets/td-set-for-fitting-2.1.0.json"
)
records_and_molecules = td_result_collection.to_records()

use_t123 = []

for _, molecule in tqdm.tqdm(records_and_molecules, desc="checking"):
    all_labels = forcefield.label_molecules(molecule.to_topology())
    for mol_idx, mol_forces in enumerate(all_labels):
        for force_tag, force_dict in mol_forces.items():
            for atom_indices, parameter in force_dict.items():
                atomstr = ""
                for idx in atom_indices:
                    atomstr += "%3s" % idx

                # for some reason this adds each molecule 4 times for each appearance of t49
                if parameter.id == 't123': 
                    use_t123.append(molecule.to_smiles())

print(use_t123) # empty list

It appears that no molecules in the training set use t123, which would make it redundant (at least based on this dataset).

It also appears that no molecules in the OpenFF Industry Benchmark Season 1 v1.1 or OpenFF-benchmark-ligand-fragments-v1.0 datasets use t123, as seen in this notebook

View file
namet123 coverage.pdf
.

t129

Covered 47 times by Sage 2.1.0/td-set-for-fitting.json and by my filtered version and by my filtered version with torsion multiplicity additions. These 47 torsions cover the 13 molecules here:

...

And shown with their SMILES here:

View file
namereport-1.pdf
.

The lingering question is whether or not the large force constant is justified by the torsion potential energy surface.

PESs

To answer this, below are the molecules for which the TorsionDriveRecord dihedrals match the SMIRKS for t129 in the training data set:

...

Each pair of images shows the molecule on the left, and the corresponding torsion drive scan on the right.

View file
namereport.pdf

From these data the force constant value of -20 kcal/mol looks reasonable and could even be a bit low for these cases.