* Note: This post contains 'preliminary valence parameter fitting results’, which was carried out with currently available QM data from 2nd generation training data sets.
Description
This post contains benchmark of preliminary valence parameter fitting (v1.2.0-preliminary).
...
Fitting Data and Results
Fitting targets: 581 1-D torsion profiles; 2,974 optimized geometries; 278 vibrational frequencies
Input force field : same initial force field used in v1.1.0 fitting
The objective function decreased from
1.02809e+04
to3.21676e+03
in 28 steps.
...
X2 for neighboring (primary) set | X2 for diverse (full) set | |
---|---|---|
Initial force field | 1435 | 29,469 |
v1.0.0 | 948 | 20,672 |
v1.1.0 | 936 | 20,097 |
v1.2.0-preliminary | 766 | 16,939 |
To provide more intuitive insights on the benchmark results, we aggregated the resulting data and made the following plots.
...
To investigate the improved performance in reproducing QM optimized geometries, the weighted root-mean-square error (WRMSE) of each molecule, which is weighted root-mean-square deviation of internal coordinates of MM optimized geometry from QM optimized geometry was calculated and compared. ( Metrics for bond, angle, improper torsion are set to be 0.05 Angstrom, 8 degree and 20 degree respectively and torsion contributions were intentionally excluded.)
...
y values in the plots (Δ WRMSE) are the difference in the WRMSE between different v1.2.0-pre and v1.1.0; Negative y value indicates better reproduction in v1.2.0-pre compared to v1.1.0. The average change in WRMSE is -1.248, indicating that overall the v1.2.0-pre better performs in reproducing QM optimized geometry than v1.1.0.
...